CFD Fire Simulation of the Swissair Flight 111 In-Flight Fire

F Jia, M Patel, E Galea

 

Abstract:

At 8.18pm on 2 September 1998, Swissair Flight 111 (SR 111) took off from New York’s JFK airport bound for Geneva, Switzerland. Tragically, the MD-11 aircraft never arrived.

 

Fire Spread at 850 secs

Fire Spread at 1500 secs

  According to the crash investigation report, published on 27 March 2003, electrical arcing in the ceiling void cabling was the most likely cause of the fire that brought down the aircraft. No one on board was aware of the disaster unfolding in the ceiling of the aircraft and, when a strange odour entered the cockpit, the pilots thought it was a problem with the air-conditioning system. Twenty minutes later, Swissair Flight 111 plunged into the Atlantic Ocean five nautical miles southwest of Peggy’s Cove, Nova Scotia, with the loss of all 229 lives on board.In this paper, the Computational Fluid Dynamics (CFD) analysis of the in-flight fire that brought down SR 111 is described. Reconstruction of the wreckage disclosed that the fire pattern was extensive and complex in nature. The fire damage created significant challenges to identify the origin of the fire and to appropriately explain the heat damage observed. The SMARTFIRE CFD software was used to predict the “possible” behaviour of airflow as well as the spread of fire and smoke within SR 111. The main aims of the CFD analysis were to develop a better understanding of the possible effects, or lack thereof, of numerous variables relating to the in-flight fire. Possible fire and smoke spread scenarios were studied to see what the associated outcomes would be. This assisted investigators at Transportation Safety Board (TSB) of Canada, Fire & Explosion Group, in assessing fire dynamics for cause and origin determination.

from this link